Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes
نویسندگان
چکیده
BACKGROUND Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed. RESULTS To avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95 degrees C for 10 minutes prior to storage at -20 degrees C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well) enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25 degrees C and the correlation between PCN and protein accumulation was established. CONCLUSION Using whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions.
منابع مشابه
EcoTM Thermal and Optical Systems Deliver High Precision
By detecting and quantitatively monitoring amplified DNA as PCR progresses, real-time PCR (quantitative or qPCR) instruments provide a robust approach for gene expression, genotyping, copy number variation, mutation screening, and methylation analysis. Data quality and reproducibility are governed by how robust a real-time PCR instrument’s thermal and optical systems are, with precise thermal c...
متن کاملNovel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.
Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range Q...
متن کاملStandard Addition Quantitative Real-Time PCR (SAQPCR): A Novel Approach for Determination of Transgene Copy Number Avoiding PCR Efficiency Estimation
Quantitative real-time polymerase chain reaction (qPCR) has been previously applied to estimate transgene copy number in transgenic plants. However, the results can be erroneous owing to inaccurate estimation of PCR efficiency. Here, a novel qPCR approach, named standard addition qPCR (SAQPCR), was devised to accurately determine transgene copy number without the necessity of obtaining PCR effi...
متن کاملAn Effective Method for Detecting Y-chromosome Specific Sequences of Circulating Fetal DNA in Maternal Plasma During the First-trimester
Background and Aims: New advances in the use of cell-free fetal DNA (cffDNA) in maternal plasma of pregnant women has provided the possibility of applying cffDNA in prenatal diagnosis as a non-invasive method. One of the applications of prenatal diagnosis is fetal gender determination. Early prenatal determination of fetal sex is required for pregnant women at risk of X-linked and some endocrin...
متن کاملTaking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution.
This paper assesses the quantitative resolution of qPCR using copy number variation (CNV) as a paradigm. An error model is developed for real-time qPCR data showing how the precision of CNV determination varies with the number of replicates. Using samples with varying numbers of X chromosomes, experimental data demonstrates that real-time qPCR can readily distinguish four copes from five copies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbial Cell Factories
دوره 7 شماره
صفحات -
تاریخ انتشار 2008